Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626169

RESUMEN

Diffusion within extracellular matrix is essential to deliver nutrients and larger metabolites to the avascular region of the meniscus. It is well known that both structure and composition of the meniscus vary across its regions; therefore, it is crucial to fully understand how the heterogenous meniscal architecture affects its diffusive properties. The objective of this study was to investigate the effect of meniscal region (core tissue, femoral, and tibial surface layers) and molecular weight on the diffusivity of several molecules in porcine meniscus. Tissue samples were harvested from the central area of porcine lateral menisci. Diffusivity of fluorescein (MW 332 Da) and three fluorescence-labeled dextrans (MW 3k, 40k, and 150k Da) was measured via fluorescence recovery after photobleaching. Diffusivity was affected by molecular size, decreasing as the Stokes' radius of the solute increased. There was no significant effect of meniscal region on diffusivity for fluorescein, 3k and 40k dextrans (p>0.05). However, region did significantly affect the diffusivity of 150k Dextran, with that in the tibial surface layer being larger than in the core region (p = 0.001). Our findings contribute novel knowledge concerning the transport properties of the meniscus fibrocartilage. This data can be used to advance the understanding of tissue pathophysiology and explore effective approaches for tissue restoration.


Asunto(s)
Dextranos , Menisco , Animales , Porcinos , Dextranos/metabolismo , Menisco/metabolismo , Meniscos Tibiales/fisiología , Fibrocartílago/metabolismo , Fluoresceínas/metabolismo
2.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424194

RESUMEN

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Asunto(s)
Menisco , Osteoartritis de la Rodilla , Calcificación Vascular , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Retroalimentación , Productos Finales de Glicación Avanzada/metabolismo , Menisco/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Serina-Treonina Quinasas TOR , Calcificación Vascular/metabolismo
3.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939174

RESUMEN

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Asunto(s)
Menisco , Células Madre Mesenquimatosas , Animales , Ratones , Menisco/metabolismo , Fibrocartílago/metabolismo , Células Madre Mesenquimatosas/metabolismo , Colágeno/metabolismo , Modelos Animales , Ratones Transgénicos , Canales Iónicos/metabolismo
4.
Osteoarthritis Cartilage ; 31(3): 363-373, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494052

RESUMEN

OBJECTIVE: There is a clear link between increasing age and meniscus degeneration, leading to increased injury, osteoarthritis (OA) progression, and often total knee replacement. Advanced glycation end-products (AGEs) are non-enzymatic crosslinks and adducts that accumulate in collagen with age, altering tissue mechanics and cell function, ultimately leading to increased injury and inflammation. AGEs, both fluorescent and non-fluorescent, play a central role in age-related degradation of tissues throughout the body; however, little is known about their role in meniscus degeneration. The objective of this study was to characterize changes in aged OA menisci, specifically evaluating zonal AGE accumulation, to gain a better understanding of changes that may lead to age-related meniscal degeneration. METHOD: Deidentified human menisci (N = 48, 52-84 years old) were obtained from subjects undergoing total knee replacement. Changes in extracellular matrix (ECM) were assessed by gross morphology, confocal analysis, and biochemical assays. Deoxyribonucleic acid (DNA), glycosaminoglycan (GAG), collagen, and AGE accumulation were compared with patient age, zonal region, and patient sex. RESULTS: There were minimal changes in DNA, GAG, and collagen concentration with age or zone. However, collagen fraying and AGEs increased with age, with more AGEs accumulating in the meniscal horns compared to the central body and in male menisci compared to females. CONCLUSIONS: Overall, this work provides greater insights into regional changes that occur in human menisci with age and OA. These results suggest AGEs may play a role in the degeneration of the meniscus, with AGEs being a possible target to reduce age-related tears, degeneration, and OA progression.


Asunto(s)
Menisco , Osteoartritis de la Rodilla , Femenino , Animales , Humanos , Masculino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Meniscos Tibiales/metabolismo , Osteoartritis de la Rodilla/metabolismo , Reacción de Maillard , Menisco/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , ADN
5.
Methods Mol Biol ; 2582: 223-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36370353

RESUMEN

Menisci are a pair of crescent-shaped fibrocartilages and composed primarily of type I collagen. Inner region of the meniscus has similar characteristics to articular cartilage. Low-intensity pulsed ultrasound (LIPUS) has been reported to have chondroprotective effects on chondrocytes by inducing the expression of chondrocyte differentiation markers and CCN2/CTGF production. Here, we describe an experimental approach that investigates the distinct cellular behavior of human inner and outer meniscus cells in response to LIPUS stimulation. Our experimental model can analyze the relationships between LIPUS-induced CCN2 and its repairing role in the meniscus.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Menisco , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Condrocitos/metabolismo , Células Cultivadas , Menisco/metabolismo , Ondas Ultrasónicas
6.
Stem Cell Res Ther ; 13(1): 382, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908010

RESUMEN

BACKGROUND: Tissue engineering focuses on reconstructing the damaged meniscus by mimicking the native meniscus. The application of mechanical loading on chondrocyte-laden decellularized whole meniscus is providing the natural microenvironment. The goal of this study was to evaluate the effects of dynamic compression and shear load on chondrocyte-laden decellularized meniscus. MATERIAL AND METHODS: The fresh samples of rabbit menisci were decellularized, and the DNA removal was confirmed by histological assessments and DNA quantification. The biocompatibility, degradation and hydration rate of decellularized menisci were evaluated. The decellularized meniscus was injected at a density of 1 × 105 chondrocyte per scaffold and was subjected to 3 cycles of dynamic compression and shear stimuli (1 h of 5% strain, ± 25°shear at 1 Hz followed by 1 h rest) every other day for 2 weeks using an ad hoc bioreactor. Cytotoxicity, GAG content, ultrastructure, gene expression and mechanical properties were examined in dynamic and static condition and compared to decellularized and intact menisci. RESULTS: Mechanical stimulation supported cell viability and increased glycosaminoglycan (GAG) accumulation. The expression of collagen-I (COL-I, 10.7-folds), COL-II (6.4-folds), aggrecan (AGG, 3.2-folds), and matrix metalloproteinase (MMP3, 2.3-folds) was upregulated compared to the static conditions. Furthermore, more aligned fibers and enhanced tensile strength were observed in the meniscus treated in dynamic condition with no sign of mineralization. CONCLUSION: Compress and shear stimulation mimics the loads on the joint during walking and be able to improve cell function and ultrastructure of engineered tissue to recreate a functional artificial meniscus.


Asunto(s)
Condrocitos , Menisco , Animales , Reactores Biológicos , Condrocitos/metabolismo , ADN/metabolismo , Glicosaminoglicanos/metabolismo , Menisco/metabolismo , Conejos , Ingeniería de Tejidos , Andamios del Tejido/química
7.
Dis Markers ; 2022: 3556372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069930

RESUMEN

Osteoarthritis (OA) is a degenerative disease characterized by articular cartilage and/or chondrocyte destruction, and although it has long been considered as a primary disease, the importance of meniscus endothelial cell modulation in the subchondral microenvironment has recently drawn attention. Previous studies have shown that apelin could potentially inhibit cellular apoptosis; however, it remains unclear whether apelin could play a protective role in protecting the endothelium in the OA meniscus. In this study, with the advantages of single-cell RNA sequencing (scRNA-seq) data, in combination with flow cytometry, we identified two endothelial subclusters in the meniscus, featured by high expression of Homeobox A13 (HOXA13) and Ras Protein-Specific Guanine Nucleotide Releasing Factor 2 (RASGRF2), respectively. Compared with control patients, both subclusters decreased in absolute cell numbers and exhibited downregulated APJ endogenous ligand (APLN, coding for apelin) and upregulated apelin receptor (APLNR, coding apelin receptor). Furthermore, we confirmed that in OA, decreased endothelial cell numbers, including both subclusters, were related to intrinsic apoptosis factors: one more relevant to caspase 3 (CASP3) and the other to BH3-Interacting Domain Death agonist (BID). In vitro culturing of meniscal endothelial cells purified from patients proved that apelin could significantly inhibit apoptosis by downregulating these two factors in endothelial cell subclusters, suggesting that apelin could potentially serve as a therapeutic target for patients with OA.


Asunto(s)
Menisco , Osteoartritis , Apelina/genética , Apelina/farmacología , Apelina/uso terapéutico , Apoptosis , Células Endoteliales/metabolismo , Humanos , Menisco/metabolismo , Osteoartritis/metabolismo
8.
Int J Biol Macromol ; 195: 179-189, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34863969

RESUMEN

The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.


Asunto(s)
Alginatos/química , Carboximetilcelulosa de Sodio/química , Gelatina/química , Menisco/citología , Bioimpresión/métodos , Cartílago/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Menisco/metabolismo , Poliésteres , Impresión Tridimensional , Programas Informáticos , Ingeniería de Tejidos , Andamios del Tejido/química
9.
BMC Med Genomics ; 14(1): 237, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34587952

RESUMEN

BACKGROUND: The componential and structural change in the meniscus with aging would increase the tissue vulnerability of the meniscus, which would induce meniscus tearing. Here, we investigated the molecular mechanism of age-related meniscus degeneration with gene expression profiling analysis, and validate pivotal genes in vivo and in vitro models. METHODS: The GSE45233 dataset, including 6 elderly meniscus samples and 6 younger meniscus samples, was downloaded from the Gene Expression Omnibus (GEO) database. To screen the differential expression of mRNAs and identify the miRNAs targeting hub genes, we completed a series of bioinformatics analyses, including functional and pathway enrichment, protein-protein interaction network, hub genes screening, and construction of a lncRNA-miRNA-mRNA network. Furthermore, crucial genes were examined in human senescent menisci, mouse senescent meniscus tissues and mouse meniscus cells stimulated by IL-1ß. RESULTS: In total, the most significant 4 hub genes (RRM2, AURKB, CDK1, and TIMP1) and 5 miRNAs (hsa-miR-6810-5p, hsa-miR-4676-5p, hsa-miR-6877-5p, hsa-miR-8085, and hsa-miR-6133) that regulated such 4 hub genes, were finally identified. Moreover, these hub genes were decreased in meniscus cells in vitro and meniscus tissues in vivo, which indicated that hub genes were related to meniscus senescence and could serve as potential biomarkers for age-related meniscus tearing. CONCLUSIONS: In short, the integrated analysis of gene expression profile, co-expression network, and models detection identified pivotal genes, which elucidated the possible molecular basis underlying the senescence meniscus and also provided prognosis clues for early-onset age-related meniscus tearing.


Asunto(s)
Envejecimiento/genética , Perfilación de la Expresión Génica , Menisco/metabolismo , Animales , Ontología de Genes , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Mapas de Interacción de Proteínas , ARN Largo no Codificante/genética , ARN Mensajero/genética
10.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360947

RESUMEN

The distribution of differential extracellular matrix (ECM) in the lateral and medial menisci can contribute to knee instability, and changes in the meniscus tissue can lead to joint disease. Thus, deep proteomic identification of the lateral and medial meniscus cartilage is expected to provide important information for treatment and diagnosis of various knee joint diseases. We investigated the proteomic profiles of 12 lateral/medial meniscus pairs obtained from excess tissue of osteoarthritis patients who underwent knee arthroscopy surgery using mass spectrometry-based techniques and measured 75 ECM protein levels in the lesions using a multiple reaction monitoring (MRM) assay we developed. A total of 906 meniscus proteins with a 1% false discovery rate (FDR) was identified through a tandem mass tag (TMT) analysis showing that the lateral and medial menisci had similar protein expression profiles. A total of 131 ECM-related proteins was included in meniscus tissues such as collagen, fibronectin, and laminin. Our data showed that 14 ECM protein levels were differentially expressed in lateral and medial lesions (p < 0.05). We present the proteomic characterization of meniscal tissue with mass spectrometry-based comparative proteomic analysis and developed an MRM-based assay of ECM proteins correlated with tissue regeneration. The mass spectrometry dataset has been deposited to the MassIVE repository with the dataset identifier MSV000087753.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Menisco/metabolismo , Osteoartritis/metabolismo , Proteoma/metabolismo , Anciano , Anciano de 80 o más Años , Proteínas de la Matriz Extracelular/química , Femenino , Humanos , Masculino , Proteoma/química
11.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199089

RESUMEN

The meniscus possesses low self-healing properties. A perfect regenerative technique for this tissue has not yet been developed. This work aims to evaluate the role of hypoxia in meniscal development in vitro. Menisci from neonatal pigs (day 0) were harvested and cultured under two different atmospheric conditions: hypoxia (1% O2) and normoxia (21% O2) for up to 14 days. Samples were analysed at 0, 7 and 14 days by histochemical (Safranin-O staining), immunofluorescence and RT-PCR (in both methods for SOX-9, HIF-1α, collagen I and II), and biochemical (DNA, GAGs, DNA/GAGs ratio) techniques to record any possible differences in the maturation of meniscal cells. Safranin-O staining showed increments in matrix deposition and round-shape "fibro-chondrocytic" cells in hypoxia-cultured menisci compared with controls under normal atmospheric conditions. The same maturation shifting was observed by immunofluorescence and RT-PCR analysis: SOX-9 and collagen II increased from day zero up to 14 days under a hypoxic environment. An increment of DNA/GAGs ratio typical of mature meniscal tissue (characterized by fewer cells and more GAGs) was observed by biochemical analysis. This study shows that hypoxia can be considered as a booster to achieve meniscal cell maturation, and opens new opportunities in the field of meniscus tissue engineering.


Asunto(s)
Diferenciación Celular , Hipoxia/metabolismo , Menisco/citología , Menisco/metabolismo , Animales , Biomarcadores , Células Cultivadas , Condrocitos/metabolismo , Expresión Génica , Glicosaminoglicanos/metabolismo , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunohistoquímica , Porcinos , Ingeniería de Tejidos/métodos
12.
FASEB J ; 35(8): e21779, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314047

RESUMEN

The incredible mechanical strength and durability of mature fibrous tissues and their extremely limited turnover and regenerative capacity underscores the importance of proper matrix assembly during early postnatal growth. In tissues with composite extracellular matrix (ECM) structures, such as the adult knee meniscus, fibrous (Collagen-I rich), and cartilaginous (Collagen-II, proteoglycan-rich) matrix components are regionally segregated to the outer and inner portions of the tissue, respectively. While this spatial variation in composition is appreciated to be functionally important for resisting complex mechanical loads associated with gait, the establishment of these specialized zones is poorly understood. To address this issue, the following study tracked the growth of the murine meniscus from its embryonic formation through its first month of growth, encompassing the critical time-window during which animals begin to ambulate and weight bear. Using histological analysis, region specific high-throughput qPCR, and Col-1, and Col-2 fluorescent reporter mice, we found that matrix and cellular features defining specific tissue zones were already present at birth, before continuous weight-bearing had occurred. These differences in meniscus zones were further refined with postnatal growth and maturation, resulting in specialization of mature tissue regions. Taken together, this work establishes a detailed timeline of the concurrent spatiotemporal changes that occur at both the cellular and matrix level throughout meniscus maturation. The findings of this study provide a framework for investigating the reciprocal feedback between cells and their evolving microenvironments during assembly of a mechanically robust fibrocartilage tissue, thus providing insight into mechanisms of tissue degeneration and effective regenerative strategies.


Asunto(s)
Cartílago , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Menisco , Animales , Cartílago/embriología , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Diferenciación Celular , Proliferación Celular , Menisco/embriología , Menisco/crecimiento & desarrollo , Menisco/metabolismo , Ratones , Ratones Transgénicos
13.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810460

RESUMEN

Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis. We found that Cramp is highly induced by IL-1ß via the NF-κB signaling pathway in mouse primary chondrocytes. Elevated Cramp was also detected in the cartilage and synovium of mice suffering from OA cartilage destruction. The treatment of chondrocytes with Cramp stimulated the expression of catabolic factors, and the knockdown of Cramp by small interfering RNA reduced chondrocyte catabolism mediated by IL-1ß. Moreover, intra-articular injection of Cramp into mouse knee joints at a low dose accelerated traumatic OA progression. At high doses, Cramp affected meniscal ossification and tears, leading to cartilage degeneration. These findings demonstrate that Cramp is associated with OA pathophysiology.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/efectos adversos , Osteoartritis de la Rodilla/fisiopatología , Animales , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Cartílago/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inyecciones Intraarticulares , Interleucina-1beta/metabolismo , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/fisiopatología , Masculino , Menisco/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoartritis de la Rodilla/inducido químicamente , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Membrana Sinovial/metabolismo , Catelicidinas
14.
Stem Cells Dev ; 30(10): 537-547, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33757298

RESUMEN

Osteoarthritis (OA) is the most common type of arthritis, afflicting millions of people in the world. Elevation of inflammatory mediators and enzymatic matrix destruction is often associated with OA. Therefore, the objective of this study was to investigate the effects of conditioned medium from periodontal ligament-derived stem cells (PDLSCs) on inflammatory and catabolic gene expressions of chondrocytes, synoviocytes, and meniscus cells under in vitro inflammatory condition. Stem cells were isolated from human periodontal ligaments. Conditioned medium was collected and concentrated 20 × . Chondrocytes, synoviocytes, and meniscus cells were isolated from pig knees and divided into four experimental groups: serum-free media, serum-free media+interleukin-1ß (IL-1ß) (10 ng/mL), conditioned media (CM), and CM+IL-1ß. Protein content and extracellular vesicle (EV) miRNAs of CM were analyzed by liquid chromatography-tandem mass spectrometry and RNA sequencing, respectively. It was found that the IL-1ß treatment upregulated the expression of IL-1ß, tumor necrosis factor-α (TNF-α), MMP-13, and ADAMTS-4 genes in the three cell types, whereas PDLSC-conditioned medium prevented the upregulation of gene expression by IL-1ß in all three cell types. This study also found that there was consistency in anti-inflammatory effects of PDLSC CM across donors and cell subcultures, while PDLSCs released several anti-inflammatory factors and EV miRNAs at high levels. OA has been suggested as an inflammatory disease in which all intrasynovial tissues are involved. PDLSC-conditioned medium is a cocktail of trophic factors and EV miRNAs that could mediate different inflammatory processes in various tissues in the joint. Introducing PDLSC-conditioned medium to osteoarthritic joints could be a potential treatment to prevent OA progression by inhibiting inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Condrocitos/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Menisco/efectos de los fármacos , Células Madre/metabolismo , Sinoviocitos/efectos de los fármacos , Proteína ADAMTS4/genética , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Medios de Cultivo Condicionados/metabolismo , Medio de Cultivo Libre de Suero/farmacología , Vesículas Extracelulares/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/farmacología , Metaloproteinasa 13 de la Matriz/genética , Menisco/citología , Menisco/metabolismo , MicroARNs/genética , Ligamento Periodontal/citología , Células Madre/citología , Porcinos , Sinoviocitos/citología , Sinoviocitos/metabolismo , Factor de Necrosis Tumoral alfa/genética
15.
PLoS One ; 16(3): e0248292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690647

RESUMEN

Low oxygen and mechanical loading may play roles in regulating the fibrocartilaginous phenotype of the human inner meniscus, but their combination in engineered tissues remains unstudied. Here, we investigated how continuous low oxygen ("hypoxia") combined with dynamic compression would affect the fibrocartilaginous "inner meniscus-like" matrix-forming phenotype of human meniscus fibrochondrocytes (MFCs) in a porous type I collagen scaffold. Freshly-seeded MFC scaffolds were cultured for 4 weeks in either 3 or 20% O2 or pre-cultured for 2 weeks in 3% O2 and then dynamically compressed for 2 weeks (10% strain, 1 Hz, 1 h/day, 5 days/week), all with or without TGF-ß3 supplementation. TGF-ß3 supplementation was found necessary to induce matrix formation by MFCs in the collagen scaffold regardless of oxygen tension and application of the dynamic compression loading regime. Neither hypoxia under static culture nor hypoxia combined with dynamic compression had significant effects on expression of specific protein and mRNA markers for the fibrocartilaginous matrix-forming phenotype. Mechanical properties significantly increased over the two-week loading period but were not different between static and dynamic-loaded tissues after the loading period. These findings indicate that 3% O2 applied immediately after scaffold seeding and dynamic compression to 10% strain do not affect the fibrocartilaginous matrix-forming phenotype of human MFCs in this type I collagen scaffold. It is possible that a delayed hypoxia treatment and an optimized pre-culture period and loading regime combination would have led to different outcomes.


Asunto(s)
Condrocitos , Matriz Extracelular/metabolismo , Menisco , Estrés Mecánico , Ingeniería de Tejidos , Adulto , Hipoxia de la Célula , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Humanos , Masculino , Menisco/citología , Menisco/metabolismo
16.
J Orthop Surg (Hong Kong) ; 29(1): 23094990211000168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33729061

RESUMEN

PURPOSE: This study aimed to investigate how fibroblastic and chondrocytic properties of human meniscal fibrochondrocytes are affected in culture conditions according to the type of meniscal pathology and localization, and to provide basic information for tissue-engineering studies. METHODS: Primary fibrochondrocyte cultures were prepared from meniscus samples of patients who had either traumatic tear or degeneration due to osteoarthritis. Cultures were compared in terms of mRNA expression levels of COL1A1, COL2A1, COMP1, HIF1A, HIF2A, and SOX9 and secreted total collagen and sulfated sGAG levels according to the type of meniscal pathology, anatomical localization, and the number of subcultures. RESULTS: mRNA expression levels of COL1A1, COMP1, HIF1A, HIF2A, and SOX9 were found to be increased in subsequent subcultures in all specimens. COL1A1 mRNA expression levels of both lateral and medial menisci of patients with traumatic tear were significantly higher than in patients with degenerative pathology, indicating a more fibroblastic character. P1 subculture of lateral and P3 or further subculture of medial meniscus showed more fibroblastic characteristics in patients with degenerative pathology. Furthermore, in patients with degenerative pathology, the subcultures of the lateral meniscus (especially on the inner part) presented more chondrocytic characteristics than did those of medial meniscus. CONCLUSIONS: The mRNA expression levels of the cultures showed significant differences according to the anatomical localization and pathology of the meniscus, indicating distinct chondrocytic and fibroblastic features. This fundamental knowledge would help researchers to choose more efficient cell sources for cell-seeding of a meniscus scaffold, and to generate a construct resembling the original meniscus tissue.


Asunto(s)
Fibrocartílago , Articulaciones/lesiones , Menisco , Osteoartritis/patología , Transcriptoma , Adolescente , Adulto , Anciano , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Femenino , Fibrocartílago/citología , Fibrocartílago/metabolismo , Fibrocartílago/patología , Perfilación de la Expresión Génica , Humanos , Articulaciones/metabolismo , Articulaciones/patología , Masculino , Menisco/citología , Menisco/lesiones , Menisco/metabolismo , Menisco/patología , Persona de Mediana Edad , Osteoartritis/genética , Osteoartritis/metabolismo , Cultivo Primario de Células/métodos , Rotura/genética , Rotura/metabolismo , Rotura/patología , Adulto Joven
17.
Cartilage ; 13(2_suppl): 476S-485S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749320

RESUMEN

OBJECTIVE: To investigate GAG-ECM (glycosaminoglycan-extracellular matrix) interactions in different cartilage types. To achieve this, we first aimed to determine protocols for consistent calculation of GAG content between cartilage types. DESIGN: Auricular cartilage containing both collagen and elastin was used to determine the effect of lyophilization on GAG depletion activity. Bovine articular, auricular, meniscal, and nasal cartilage plugs were treated using different reagents to selectively remove GAGs. Sulfated glycosaminoglycan (sGAG) remaining in the sample after treatment were measured, and sGAG loss was compared between cartilage types. RESULTS: The results indicate that dry weight of cartilage should be measured prior to cartilage treatment in order to provide a more accurate reference for normalization. Articular, meniscal, and nasal cartilage lost significant amounts of sGAG for all reagents used. However, only hyaluronidase was able to remove significant amount of sGAG from auricular cartilage. Furthermore, hyaluronidase was able to remove over 99% of sGAG from all cartilage types except auricular cartilage where it only removed around 76% of sGAG. The results indicate GAG-specific ECM binding for different cartilage types and locations. CONCLUSIONS: In conclusion, lyophilization can be performed to determine native dry weight for normalization without affecting the degree of GAG treatment. To our knowledge, this is the first study to compare GAG-ECM interactions of different cartilage types using different GAG extraction methods. Degree of GAG depletion not only varied with cartilage type but also the same type from different anatomic locations. This suggests specific structure-function roles for GAG populations found in the tissues.


Asunto(s)
Cartílago , Menisco , Animales , Cartílago/metabolismo , Bovinos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Menisco/metabolismo
18.
Cartilage ; 13(2_suppl): 117S-128S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33090007

RESUMEN

OBJECTIVE: The aim of this study was to investigate the roles of SMURF1 and SMURF2 in progenitor cells from the human knee in late-stage osteoarthritis (OA). DESIGN: We applied immunohistochemistry, immunocytochemistry, RNAi, lentiviral transfection, and Western blot analysis. We obtained chondrogenic progenitor cells (CPCs) from the articular cartilage and meniscus progenitor cells (MPCs) from the nonvascularized part of the meniscus. RESULTS: SMURF1 and SMURF2 appeared in both osteoarthritic tissues. CPCs and MPCs exhibited comparable amounts of these proteins, which influence the balance between RUNX2 and SOX9. The overexpression of SMURF1 reduced the levels of RUNX2, SOX9, and TGFBR1. The overexpression of SMURF2 also reduced the levels of RUNX2 and TGFBR1, while SOX9 levels were not affected. The knockdown of SMURF1 had no effect on RUNX2, SOX9, or TGFBR1. The knockdown of SMURF2 enhanced RUNX2 and SOX9 levels in CPCs. The respective protein levels in MPCs were not affected. CONCLUSIONS: This study shows that SMURF1 and SMURF2 are regulatory players for the expression of the major regulator transcription factors RUNX2 and SOX9 in CPCs and MPCs. Our novel findings may help elucidate new treatment strategies for cartilage regeneration.


Asunto(s)
Cartílago Articular , Menisco , Osteoartritis , Cartílago Articular/metabolismo , Condrogénesis , Humanos , Menisco/metabolismo , Osteoartritis/metabolismo , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Cartilage ; 13(2_suppl): 1442S-1455S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32940061

RESUMEN

OBJECTIVE: Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS: Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1ß, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS: HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION: The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


Asunto(s)
Menisco , Osteoartritis , Animales , Condrocitos/metabolismo , Hipoxia/metabolismo , Hipoxia/patología , Meniscos Tibiales/patología , Menisco/metabolismo , Ratones , Osteoartritis/metabolismo
20.
J Biomed Mater Res B Appl Biomater ; 109(2): 201-213, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32761755

RESUMEN

The meniscus has complex biomechanical functions endowed by the hierarchical fibrous structure of its extracellular matrix (ECM), which plays a central role in protecting the knee joint. However, it is challenging to recapitulate the ECM structure of the meniscus. Herein, we used electrospinning to prepare various scaffolds with distinct nanofibrous structures to approximate that of the heterogeneous ultrastructure of meniscus ECM. Our results showed that adjusting the deposition manner of nanofibers during electrospinning could effectively manipulate the architectures of resulting scaffolds. This approach led to electrospun scaffolds with random or aligned fibrous structures that reassemble the surface or superficial layers of the meniscus. We also showed that assembly of electrospun nanofibers into yarn-like configurations replicates the circumferentially aligned fibrous bundles of the inner part of the meniscus. These scaffolds exhibited distinct fibrous anisotropies and mechanical properties. In vitro studies indicated good cytocompatibility of scaffolds, especially, the yarn scaffold supported considerable meniscus cell infiltration. The meniscus cells, in turn, enhanced the mechanical properties of scaffolds. Taken together, these data imply that electrospun scaffolds may have potential in enhancing meniscus repair and regeneration.


Asunto(s)
Matriz Extracelular/química , Ensayo de Materiales , Menisco , Nanofibras/química , Andamios del Tejido/química , Animales , Células Cultivadas , Menisco/química , Menisco/citología , Menisco/metabolismo , Conejos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA